Calculates and plots the allowable bearing capacity for different footings.

bearing_capacity(
  B,
  D,
  L = NULL,
  gamma.h,
  gamma.s,
  tau0,
  phi,
  wl,
  FS,
  footing = c("strip", "square", "rectangular", "circular")
)

Arguments

B

The footing's width (in meters)

D

The footing's embedment depth (in meters)

L

The footing's length for a rectangular footing (in meters)

gamma.h

The wet unit weight of the soil (in kN/m3)

gamma.s

The saturated unit weight of the soil (in kN/m3)

tau0

The soil's cohesion (in kPa)

phi

The soil's friction angle

wl

The depth to the water level (in meters)

FS

The Factor of Safety to use for the calculation of qa

footing

Type of footing for which to calculate the bearing capacity (Default is "strip")

Value

A data frame with the solution (Depth in rows, Width in columns) and the respective plot

Details

The B and D parameters can be vectors for multiple cases comparisons or single values for a single case estimates. If FS = 1 then qa = qu. For a total stress analysis (TSA) in a cohesive soil (plastic silts and clays) set the friction angle equal to zero (phi = 0) and the cohesion equal to the undrained shear strength (tau0 = Su). For an effective stress analysis (ESA) in a cohesive soil use the effective friction angle and effective cohesion. For a coarse-grained soil (gravels, sands, and non-plastic silts) usually TSA = ESA, and the friction angle and cohesion should be used, and if the material has no-cohesion then set cohesion equal to zero (tau0 = 0)

References

Day, R. W. (2010). Foundation Engineering Handbook. McGraw Hill.

Examples

B = seq(0.5, 2, 0.25) D = seq(0, 2, 0.25) L = NULL gamma.h = 15.5 gamma.s = 18.5 tau0 = 10 phi = 30 FS = 3 wl = 1 bearing_capacity(B, D, L, gamma.h, gamma.s, tau0, phi, wl, FS)
#> $Result #> # A tibble: 9 × 8 #> `D/B` `0.5` `0.75` `1` `1.25` `1.5` `1.75` `2` #> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 0 150. 163. 176. 160. 168. 175. 182. #> 2 0.25 179. 192. 182. 189. 197. 204. 211. #> 3 0.5 208. 204. 211. 218. 226. 233. 240. #> 4 0.75 225. 233. 240. 247. 255. 262. 269. #> 5 1 254. 262. 269. 276. 284. 291. 298. #> 6 1.25 220. 227. 234. 242. 249. 256. 264. #> 7 1.5 236. 243. 251. 258. 265. 272. 280. #> 8 1.75 252. 260. 267. 274. 281. 289. 296. #> 9 2 269. 276. 283. 290. 298. 305. 312. #> #> $Plot
#>
bearing_capacity(B, D, L, gamma.h, gamma.s, tau0, phi, wl, FS, footing = "square")
#> $Result #> # A tibble: 9 × 8 #> `D/B` `0.5` `0.75` `1` `1.25` `1.5` `1.75` `2` #> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 0 182. 192. 203. 190. 196. 202. 208. #> 2 0.25 211. 221. 213. 219. 225. 231. 237. #> 3 0.5 240. 237. 242. 248. 254. 260. 266. #> 4 0.75 260. 266. 271. 277. 283. 289. 295. #> 5 1 289. 295. 300. 306. 312. 318. 324. #> 6 1.25 254. 260. 266. 272. 277. 283. 289. #> 7 1.5 270. 276. 282. 288. 294. 299. 305. #> 8 1.75 287. 292. 298. 304. 310. 316. 322. #> 9 2 303. 309. 314. 320. 326. 332. 338. #> #> $Plot
#>
bearing_capacity(B, D, L = 3, gamma.h, gamma.s, tau0, phi, wl, FS, footing = "rectangular")
#> $Result #> # A tibble: 9 × 8 #> `D/B` `0.5` `0.75` `1` `1.25` `1.5` `1.75` `2` #> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 0 151. 161. 172. 159. 165. 171. 177. #> 2 0.25 180. 190. 182. 188. 194. 200. 206. #> 3 0.5 209. 206. 211. 217. 223. 229. 235. #> 4 0.75 229. 235. 240. 246. 252. 258. 264. #> 5 1 258. 264. 269. 275. 281. 287. 293. #> 6 1.25 223. 229. 235. 241. 246. 252. 258. #> 7 1.5 239. 245. 251. 257. 263. 268. 274. #> 8 1.75 256. 261. 267. 273. 279. 285. 291. #> 9 2 272. 278. 284. 289. 295. 301. 307. #> #> $Plot
#>